Hi,

In the tutorial “A Complete Tutorial to Learn Data Science with Python from Scratch” by KUNAL JAIN at

I have used this code

```
#Import models from scikit learn module:
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import KFold #For K-fold cross validation
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn import metrics
#Generic function for making a classification model and accessing performance:
def classification_model(model, data, predictors, outcome):
#Fit the model:
model.fit(data[predictors],data[outcome])
#Make predictions on training set:
predictions = model.predict(data[predictors])
#Print accuracy
accuracy = metrics.accuracy_score(predictions,data[outcome])
print ("Accuracy : %s" % "{0:.3%}".format(accuracy))
#Perform k-fold cross-validation with 5 folds
kf = KFold(data.shape[0], n_folds=5)
error = []
for train, test in kf:
# Filter training data
train_predictors = (data[predictors].iloc[train,:])
# The target we're using to train the algorithm.
train_target = data[outcome].iloc[train]
# Training the algorithm using the predictors and target.
model.fit(train_predictors, train_target)
#Record error from each cross-validation run
error.append(model.score(data[predictors].iloc[test,:], data[outcome].iloc[test]))
print ("Cross-Validation Score : %s" % "{0:.3%}".format(np.mean(error)))
#Fit the model again so that it can be refered outside the function:
model.fit(data[predictors],data[outcome])
```

and also

```
outcome_var = 'Loan_Status'
model = LogisticRegression()
predictor_var = ['Credit_History']
classification_model(model, df,predictor_var,outcome_var)
```

I am getting this error

`TypeError: __init__() got multiple values for argument 'n_splits'`

It seems to be indicating this line is the problem

`---> 24 kf = KFold(data.shape[0], n_splits=5)`

I would really appreciate any suggestions or help

Thank you